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Figure 4. Same as Figure 3, except that the means of the variables associated with all components

past component one were now also chosen uniformly randomly, though from between 1.9 and 2.1.
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T.0.65 -0.55 -0.45 -0.35 -0.25 -0.15 -0.05 0.05 0.15 0.25 0.35 O0.45

Figure 3. Histogram of the differences ip betweene(b) ande() for the same situation as in
Figure 2, except N is increased to 10, 240 experiments were conducted, ={1,1,1,1,1,1,1,1,
1, 1}, and all components dd < .25 were zeroed out. The means for component one for both
actions were chosen uniformly randomly between 0 and 10.0, and the variances were chosen uni-
formly randomly between 0.0 and 3.0. The means of the other variables were all 2, for both

actions, and the associated variances were chosen uniformly randomly between 0 and 5.0.
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-] A
-0.55 -0.45 -0.35 -0.25 -0.15 -0.05 0. 05 0.15 0.25 0.35

Figure 2. Histogram of the difference betweprwhenb = t and for the teacherd . The total

number of experiments was 350, M was 50, m =1, = (1, 1), and diagonal covariance matrices
were used. The two variances for the first componeny of  (one variance for each action) were
both chosen by sampling the uniform distribution extending from 0.0 to 1.0, and for the second
component by sampling the uniform distribution extending from 0.0 to 100.0. The components of
R, were chosen by randomly sampling a uniform distribution from 0.0 to 10.0. Both components

of p,were 2.
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Figure 1. A plot of a(B) forK =2, N =2, D=0 ,m=1,¢ =(1, 1), and diagonal covariance
matrices. Foraction 3; =(1,3),amg = (0, 3). The two variances for both actions were 1 and
25 (one variance for each componentyof ). The optiBwaI Is proportional to (1, 0). Fdy tpis
was .16. In contrasp for b = t was .34; performance improved by using the optifnal by over

a factor of 2.
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(0 (B'DB) m]eF /2 .
: 1. :
= , since E is diagonal and terms like

2"? Jdet(B)

) HéTﬁ) [, have odd symmetry.

. .=l : . . . ,
Again usingE = ‘s being diagonal and symmetry arguments, we can write our integral, getting

2~-1
—U; Eii /2
e du

[[u’(B'DB)i]

211,/ Eji
onal. ButTr(éTﬁéE) = Tr([N)I§I~EI§T) = Tr(f)é) , by definition o8 and&

C.3)

= Ziéii(éTbé)n = Tr(B'DBE) , sinceE is diag-

A similar result holds for G, . Now use Thm. 2 to write E(G b, 0%, m) =
(G1+Gy)

S+ (G, + Gl)%‘—C[ E(3,,), 02(6m)]g. Plugging in gives the result claime@ED.
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2p. (1 - ML )?, which takes on its minimal value of 2 wheny, = 0. So p = 62/ 2u2, which
is what one would expect from Chebychev’s inequality.
In addition to this bound, since x is symmetric abuitwe also know that p< 1/2. This

establishes (ii))QED.

APPENDIX C - Proof of Theorem 4.

Examining the terms in Thm. 2, we see immediately that= b 0p, andg, = b 0, . We

can also immediately writed> = By, —-0)]1° ) = BUE=R) (-A)ID ) =
B CE((9,-1y) (9,-,)) B = B C, (B. Similarly, 62 =B [C, [B . So C(E&y,), 0X(5yy) is the

cumulative distribution function of a Gaussian with mezﬁw[(ﬁz—lil) and variance
b{Cp+Cy) B m
, evaluated at 0. This is just {1erf b (A, — A4) — 1 ! 2}.
m PRz 2[b (C + Cy) (B

The remaining terms to calculate £¢ & . Writing it out,

C1) Gi=E(G| A=1) = [G(3:)P(3,)d,

(e + 3 D )e—(vl—m)tézltm—rll)lz
1 1 1

(2m™?,/ det( )
(92D 03, +¥; (D Ry +py (D 3]
(2" Jdet( Cy)

Now make the variable transformatiogn= B th%eTéIlé = E_l for some diagonal

det( Cy)
det( E)

dy,

ez 1 3, /2 &,

¢y +H1E[~)Eﬁl+

matrix E , i.e.,B diagonalizé]1 . Then dét( ) , and our integral becomes

(lo (B'DB) i+ OB D)y, +p, (OB) (aje "= ™%

2m"? Jdet(®

C.2)
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Now Z.K: 1J’ P;(u) [l_lj;ticj(u)] du = I %[Hjcj(u)] du = 1 always, by the chain rule.
Accordingly, if we add and subtracbk Zle 1I P;(u) [|_|J.¢i Cj(u)] du  from the last expres-
sion in Eq. (B.2), we geGy + ZiKz_ll(éi ~Gk) [ Pi(w [[]; i Ci(W] du. Plugging this into

the definition ofp{gi}(K, m) gives the result claime@ED.

APPENDIX B - Proof of Lemma 1.

Consider the case where P(x) is not constrained to be symmetric pbdte bound in (i)
trivially holds forp = 0. Without loss of generality take> 0. Define Ejooodx P(x) and p sim-
ilarly. Definepg as the expectation of x restricted to the positive d)éci)oa;lx XP(x) / pr, and define
p. similarly. Then by Jensen’s inequality, for any fixed form of the distribution P(x) over the x <
0, if we replace P(x) for the x > 0 withgd(x - pg) we will decrease the variance of P(x) over all
of x, while not changing its mean. Therefore for a fixgg 1, and 1, the associated P(x) having
the minimal variance is P(x) R@(X - Hg) + (1-R) O(X - 1 ).

That minimal variance iUy - pL)2 (Pr - pRZ). The associated value pfis just jr(URg - ML) +
M. Therefore g - 1) = (K- M)/ pr- Plugging into the formula for the minimal variance, we
geto? = (U - H)? (Pr - PRY) / Pr?- Sincey, must be< 0 by definition andi = 0 by hypothesis,
this minimal variance is minimized by havipg = 0:0% = p2p_/ (1-p).

This lower bound on the variance is monotonically increasing as a functiop. dkqrord-
ingly, this same formula gives us an upper bound on ththat are compatible with a given vari-
ance. Inverting, we see that that bound isgdst(a? + p?). This establishes (i).

To establish (ii), we start the same way, replacing P(x < 0) witB(® - ). Since X is symmet-
rically distributed abouft, we must concurrently replace P(x g)dwith p o(x - (1 — M )). As our
next step, we replace P€x < 2u) with (1 - 2p ) &(x - 1). Doing all this leaves E(x) and P(x < 0)

unchanged, and also leaves x symmetric alpputhile decreasingyz. This minimal variance is
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APPENDIX A - Proof of Theorem 1.
Writing it out,

B.1) P(naive student chooses action i | K, m}){g=

IO(si—max[sl..., S _ 1S+ e sK])n'j(: 1P, m(8)) dsp...dsy.

To evaluate this, it helps to consider the density functigful defined as the density over the
random variable max|gy 1), ---, 9-1(Vi-1)» G+1(Vi+1), ----» k(Y k)], evaluated at the value u. This
is because by change of variables, our integral can be rewritten as
I@(s— u) P;. g m(S)P_i(u) ds du. Now by definition, B(u) = %(Pr[Zgl(yl(t))s mu,
DERUROELIPTIRCAOELISH I ADEDE where Pr(x) is defined
as the probability of event X. Since all the events in the argument of the probability in our expres-

sion are independent, we can rewrite this as _j(up =

%(Cl(u) X...Ci_1(u) xC;, 1(u) xCy(u)) where for shorthand we're defining;(Q)

Ci,gi,m(u)-

Plugging this in, we ge}’ O(s-u) Pi,gi’m(s) %[Hjiicj(u)] dsdu as our integral. Per-

forming the inner integral over s gives 1;{\§. Plugging this into Eq. (B.1) gives

B.2) E(G | naive student, K, m,;{y

= ZiK:léiJ’[l—Ci(u)] %{ﬂmcj(u)] du

- 55,6 [1_J' C.(u) %[Hmcj(u)] du}

Z:iléi I P;(u) [|_|j¢icj(u)] du (after integrating by parts).
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2. Throughout this paper we will assume that there are no singularities in any of our distributions
and none of the {d.)} have “plateaus” of nonzero measure across which they take on a constant

value. Accordingly, this argmax is unique, with probability 1.

3. In practice, it is often useful to evaluatg; R(x) by multiplying m times the inverse Fourier
transform of F(Pi,f’l(x))(k)]m evaluated at mt, wherg(P, ; 1(x))(k) is the Fourier transform of

Pt 1(x), evaluated at k.

4. The canonical example of such a case would be where the priopigvand i , is uniform up

to very large cutoffs. For such a case the posteriar of [disidfi, 8(2 - (R, — R9) P(R1, A2 |

{y1(), y201) O fdR1dR23(z - (A2 - AY) PEY 10} | Ay PEY2A)} | B2). Up to overall nor-
malization constants, this integral is just the distribution of the difference of two random variables
R, andp,, distributed according to P§{1(t)} | R 1) and P{9,(t)} | [ 5), respectively. Since those

two distributions are just Gaussians, we see that the posterior is just a Gaussian over , having
mean[zlstswI (yo(t) =y4(t))] /M , and having variancnq2 / M for each component i if the
covariances ol ; andy , are diagonal. That mean is, by definitian, . In turn, as discussed above
just before Thm. 2, since eacxini2 is the variance of the difference of two random variables
(namely the i'th component of, and the i'th componentygf ), it equals the sum of the vari-
ances of those two variables. Finally, those two variances can be estimated from the data directly,

for example in the same calculation that estimates the&yvo , say by using maximum likelihood.

2
o

This provides us with our variance(‘gzz =u



21

where rather than simply setting the reward signal of a single student to optimize its utility, there
are multiple students, and one must set their reward signals so that their collective behavior opti-
mizes a global utility. What makes this problem so challenging is that in addition to addressing the
“optimal teaching” kinds of issues investigated in this paper, in choosing each of the student’s
reward signals we must also ensure that those signals induce the students to work cooperatively as
far as the global goal is concerned, rather than at cross-purposes. In particular, we must ensure
that the system does not exhibit tragedy of the commons phenomena [4], like traffic jams and bot-
tlenecks [1, 5].

This variant of this paper’s topic is known as “Collective Intelligence”. Preliminary work on
collective intelligence, including an overview, and applications to network routing, the El Farol
Bar problem, and the leader-follower problem, can be found in [14, 12, 13], respectively. In addi-
tion to extending the results of this paper to more complicated learning scenarios and students,

future work also involves incorporating these results into the collective intelligence domain.

FOOTNOTES

1. Of course, one can always dispute the validity of any particular choice of estimator, this one
included. Our purpose in this paper is not to engage in (potentially endless) disputes about what
estimator the student should use. oy choice, there will be an associated calculation we can
perform of how best to distort the reward signal the student receives. In general, that optimal dis-
tortion will be non-zero. This paper is simply the investigation of this issue of how to distort the
reward signal for one estimator, an estimator that is both very reascamabieri and imposes an
extremely small computational burden on the student. The latter point is especially important
when one is concerned with massive MAS’s, many of the agents in which are computationally

weak. See [14].
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smallest of the components of the filter set to O after the ascent has completed. With this approxi-
mation, the communication and computational overheads in generating the student’s reward sig-
nal at each moment in the teaching phase is minimal. We also intend to investigate “parallelizing
the teacher”, by distributing to the computational devices associated with each random variable an
approximate version of the calculation of whether the associated component of the linear filter is
low enough to be set to zero. This minimizes both the computational and communication burdens
on the teacher, compared to having the teacher receive and process all the data from all the ran-
dom variables.

Other future work involves calculating the optimal functiong({g for the case of the Baye-
sian calculation with a Gaussian approximation to the posterior. This contrasts with the calcula-
tion presented above as our “special case”, which is of the optimal g(.) that is a linear function of
its argument and is independent of A. Of particular interest is the case where the prior over the
vector {E(y; )} is biased towards having many components be independent of i, since that should
be the case in large MAS’s, where many random variables in the environment don’t depend on the
student’s actions. Also of interest is using tractable priors over the covariances ofithe { }.
Regardless of the priors one uses, one practical concern with using this kind of more general
{gi(.)} is that, having more degrees of freedom than the g(.) calculated here, it may be prone to
overfitting the data, especially if not all of our distributions are Gaussians.

Other future work involves investigating schemes for distorting reward functions in more
complicated RL scenarios than the one considered in this paper. Such work would consider sce-
narios in which utility is not an undiscounted sum of rewards each of which only depends on a
single action by the agent. In particular, such work would consider alternatives to the usual Q-
learning and TD types of schemes in which the utility function is distorted “with malice afore-
thought” to improve the performance of the RL algorithm. Such distortions could potentially be
used to address issues like credit assignment, the exploration-exploitation trade-off, etc., in addi-
tion to the signal/noise issues explored in this paper.

An extraordinarily rich and challenging variant of the work in this paper concerns situations
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the associated variances were chosen uniformly randomly between 0 and 5.0.

A total of 240 experiments were conducted. When the threshold for zeroing a compoment of
was 0 (i.e., no components were zeroed), the differenpebietweers(B) ande(¢) was .137 +/-

.025. When we zeroed out all component$of that were less than .25, the average diffepence in
betweerE(B) andg(t) was .142 +/- .027. The histogram of those differencgs fior this second

case are presented in Figure 3. On average, 76% of the componeﬁnts of were zeroed out. In 15 of
the 240 experiments the first componenBof was (erroneously) zeroed out.

We then conducted a second set of zeroing out experiments identical to these first ones, except
that the means of the variables associated with all components past component one were now also
chosen uniformly randomly, though from between 1.9 and 2.1. Without zeroing the average dif-
ference inp between—:(B) ande(¢) was .150 +/- .025. When all components with values less than
.25 were zeroed out, the differencepirbetweere(B) ande(t) was .156 +/- .027. The histogram
of those differences ip for this second set of zeroin@- 's experiments are presented in Figure 4.
On average, 79% of the componentsEof were zeroed out. In 9 of the 240 experiments the first
component ob was (erroneously) zeroed out.

Clearly for this problem at least, zeroing out small-enough componerﬁts of results in no deg-

radation in performance.

CONCLUSIONS

This paper demonstrates that distorting the reward function can result in major improvements
in performance of a reinforcement learning algorithm, both in theory and in simulations. In the
future we plan to extend our investigation in many respects. One is to consider the setting of linear
filter reward functions via gradient ascent over the kinds of model-independent, student-indepen-
dent approximations to the surface of posterior expected true utility that were discussed after

Thm. 4. In particular, we plan to investigate approximating such a gradient ascent by having the
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teacher with an observation phase. The teacher then used the data collected during that phase to
set the parameters of the approximation to the posterior expected reward presented at the end of
Section 4. It then ran a gradient ascent on that surface to find an o;ﬁiméﬁ) was then calcu-

lated using the actual means and variances ofyfthe , giving the expected performance of a student
when using thab to set its reward signals during a subsequent teaching phase. The pdtwe of
these rewards was compared to that(a@f) to get a final quantification of how much the Bayesian
teacher managed to benefit the student.

The result of these experiments is presented in Figure 2 as a histogram of the difference
betweerp whenb = t and for the teacher'd . The total number of experiments was 350, and
Mwas 50. m=1¢ =(1, 1), and diagonal covariance matrices were used. The two variances for
the first component of (one variance for each action) were both chosen by sampling the uniform
distribution extending from 0.0 to 1.0. The two variances for the second component were both
chosen by sampling the uniform distribution extending from 0.0 to 100.0. The componghys of
were chosen by randomly sampling uniform distributions, and similarly for the components of
R, . Those distributions were both Dirac delta functions about the same value for component 2,
centered about 2. For component 1, for both actions, the upper bound of the distribution was 10,
and the lower bound of the distribution was 0. The differencg @xtended from a low of -.53 to
a high of .34. The average was .098, +/- .013. A total of 320 out of the 350 experiments resulted in
a positive difference in thp's. Clearly the Bayesian teacher provides very significant benefit to
the student.

Finally, we have conducted some preliminary investigations of our scheme for setting some of
the components of the Bayesian teachér's  to 0. We increased N to 10, while keeping diagonal
covariance matricepM=50andm=1¢ ={1,1,1,1,1,1,1, 1,1, 1}. Asin theperiments that
resulted in Figure 2, we still only had component one matter, i.e., for all other components the
means were the same for both actions. The means for component one for both actions were cho-
sen uniformly randomly between 0 and 10.0, and the standard deviations were chosen uniformly

randomly between 0.0 and 3.0. The means of the other variables were all 2, for both actions, and
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g(b, z) = g(b, z) +

2 el
[o_,L/ M 2b_b__|\/|bibi(BDz)(cmz) . B (Cas Co) BT 20
Disien| 2 [ 2mb [ C, + Cy) [Bd "' |6, + Cy) ) '

This approximation has the following reasonable properties:
1) It is proportional to the magnitude of ;

2) Itis invariant under rescaling bf ;

3) (5i2 =0 [0i) O only thee term contributes;

4) ChangingB to increade[  while keeping everything else fixed is good, in general.

5. EXPERIMENTS

To consider the special case of Sections 3 and 4 in more detail, Figure 1 presents the function
for the case of K =2, N =2pD = 6 m=1,¢ = (1, 1), andliagonal covariance matrices. For
action 1,p; =(1, 3), anql, =(0, 3). Note that these means are identical for componept 2 of -
that component serves purely as noise. The two variances for action 1 were 1 and 25 (one variance
for each component gf ). The two variances for action 2 were 1 and 25. (A large variance for a
component 2 that contributes only noise, with K = 2, is equivalent to small variances for many
components all of which contribute only noise, with K > 2.) The optifnal  is proportional to (1,
0). For thisb P was .16. In contrasp for b = t was .34. Botlp’s are less than .5, in agreement
with Thm. 3(ii). Performance improved by using the optiﬁnal by over a factor of 2.

To test how much of this potential improvement can be actually realized by our Bayesian
teacher, we ran a set of computer simulations. In each of these the means and variancgs of the

were randomly chosen, and the resultant distributions were sampled M times to provide the
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4. THE POSTERIOR OPTIMAL TEACHER FOR OUR SPECIAL CASE

In the real world the teacher doesn’t kn@y [, C. ,© ., butmustestimate them from
the data acquired during the teacher’'s observation phase. Accordingly, the teacher’s task is to
choose theb that maximizes the posterior expected value of G, EﬁG | , m, data) =
IE(G|E A1, By, C1, C2)P(Ry, Py C1, Co | datgdfi,(d,). Evaluating this expression will
require specifying a prior B, Ry, C1, C2 ). In particular, in large MAS'’s, one would probably
want a prior that biasgs, —fl,  to have most of its components close to 0.

To illustrate this we consider the case whé@ é@d are known or in some other way fixed
(e.g., they're set to their maximum likelihood estimates), and; A{, | data ) is well-approxi-
mated by a diagonal Gaussian with mean  and variarr‘o:,eé Under these conditions,
DBE(G|B m data = Ie_zi(z‘_zi)zlzoizmsg(ﬁ) / [(2n)N/2|_|i|6i|]d2, whereDBe(B) is evalu-
ated atpl; —f, = z . Since that gradient is itself a Gaussiarzin  times a monomial in
DBE(G|B m datag is a Gaussian integral. One can carry through this integral to get a closed
form expression, which can then be used in a gradient ascent to find the maxima of
E(G|h m data.

The functional form of this closed form expression for the gradient is not very illuminating

however. As a pedagogical alternative, we assume that our Gausgian P( | data) is sharply peaked,

and approximate(B) to second order iz aboat |, the peak of our Gaussian:

2
_ . . 1 . _y 0

e(b, 2) = &b, 2) +(z -z)00,&(b, z)|2=2+ézi’j(zj—zj)(zi—zi)ms(ﬁ, 7) .

=7

The second term integrated against our Gaussian P( | data) equals O, since that term has odd

symmetry. The first term just contribute@B, z) after that integration. Doing the double differen-

tiation in the third term and evaluating at= z  produces a Gaussian in . We must evaluate the

integral overz of the product of that Gaussian witlxP( | data). The result is the following approx-

imation:
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ing components ob to O will not affect the numerator of the argument of the erf occurring in
Thm. 4, but it will decrease the denominator. Accordingly, our doing this will increase the erf
term in Thm. 4 ifb (i, - [ ,) is positive, and will decrease it B ({1, - [1 ;) is negative. So if

D = 6 the b maximizings(B) has the value 0 for all components for whigh — fi ; equals O.
Intuitively, the optimal student ignores all components of yhgt) for which both actions have

the same expected payoff, since those components just contribute an overall noise to the reward
signal.

In practice, as discussed in the experiments section below, we can exploit this effect by setting
to 0 all components ob  whose magnitude falls below some preset threshold. Examination of
Thm. 4 suggests that we can go further and approximate such a zeroing operation in a parallel
fashion. For example, we could set to 0 all components i such M is small
enough. If the random variable i has a computational device assomat(ecélva\;itcrili)tii e.g., ifitis a stu-
dent in a MAS), then by only examining data generated by random variable i during the observa-
tion phase in response to the student’s actions, the computational device associated with random
variable i can determine whether to zero out the associated comporient of . Then the data associ-
ated with that variable need only be communicated to the teacher if the associated component of
b has not been zeroed out. As discussed in the introduction, this would potentially reduce signifi-

cantly the computational and communication burdens on the teacher.

In general, even wheb & , So that both G(.) and g(.) are linear functiog?ng,dheB max-
imizing e(B) will not equal ¢ . In other words, even if both G(.) and g(.) are linear functions of
Y o, We will not want to have gf ) = G(y a)- This demonstrates that even in this simple scenario,
we will want to distort the reward to achieve best performance of the student. The details of how

to estimate that optimizing distortion from a finite set of data are discussed in the next section.



14

To address the general case we must evaluate the expected value of G as a furiction of . As
mentioned just after its presentation, Thm. 2 applies to our special case of normally distgiputed
andy, and linear g(.), since in this cas®fX must be a Gaussian. For pedagogical value, the

evaluation of the terms in that theorem is performed in Appendix C. The result is as follows:
Theorem 4:8(5) = E(G | b,e,D Ao fy, C~22, C~:1, m) =

%[C Qo+ [y + R0 iy + Ay 0D [y + TrD €2+ Cy)]

+

%[C Q- fy) + R 0D My — Ay 0D [y + TrD (C2- Cp))] X

O fm Bt(ﬂz—ljl) }D
fO = — — .
o DHJBE(Cﬁcl) b |0

b (R, - s
Our expected G is maximized by tie  for whiﬂg{ E(an Fl) } 0= . By examining
JBOC,+Cy)
Thm. 4 we see that which of the zeroes of this quantity we want will depend on whether we want
O bp,— 0
the maximum or the minimum of the quantity %\r/@{ [(PZ ?1) }D occurring in Thm. 4.
JBOCy +Cy) B0

In turn, which of those we want will depend on the sign of the multiplicative fdatdi{fl , — f 1)

+ |32EI5 R, - |:11EI5 R, + Tr(D (C~:2+ C~:1))]. So for example, if that sign is positive, then
b (A, ~ Ay }D

— — 0 , which occurs when its argument is max-
JBOCy+ Cy) (B0

imal. Conversely, if the sign of the factor is negative, we want to minimize that argument. In par-

. U [m
we want the maximum of erf 5

ticular, if D = (3 then we wanb {1, - fi;) ande (P, - ;) to have the same sign. In other

words, we wanb and to have the same projection onto the difference in exgecte¢il 'S,

o).

Now consider the case where some componenfsof [l 1 equal 0. Setting the correspond-
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can update g(.) (which in this case means updaking ), then the teacher's goal is use the data it
gleans during the observation phase to calculate the opbmal , which it then transmits to the stu-
dent, and which the student subsequently uses to evaluate its reward signals during the teaching
phase.

ForD =0 ,t ={1,1,1,., 1}, and bothf:A diagonal, there are two extremal cases. In the first
one,flo- R1={1,0,0, ..., O}. In this case, having any of the components;9§ honzero will
simply result in noise being added toyg(t)) - g(y »(t)), in the sense that the associated compo-
nents ofy ,(t) andy 4(t) convey no information about which action is preferable, and therefore can
only serve to “confuse” the student’s algorithm, A(M+m+1) = 3/2 + sBQL1<t<m+m 9V 1(1)) -
a(yo(1) 1/ 2. (In fact, it is hard to imagine a non-pathological algorithm for which allowing any
of the components of ,(t) and y 4(t) beyond the first to contribute to the associated rewards can
do anything other than decrease performance for this case.) Accordingly, the oBtimaI for this
caseis (1,0,0, ..., 0).

Intuitively, in the language of sampling theory statistics, having = (1, 0, 0, ..., 0) rather than
b O ¢ introduces bias into the student’s algorithm, but more than compensates for that by
decreasing the variance so that the total sum of bias and variance - which gives the expected per-
formance - improves [15]. Another way to understand the usefulness of hiving ¢ and  not be
parallel is to view the student as running a search algorithm to try to find the optimal action. In
this perspective, the student is repeatedly sampling the (noisy) surface that maps actions to
rewards, with the desire of finding its maximum. Distorting the reward signal then corresponds to
modifying a surface to make it easier to search while leaving its maximum intact.

Conversely, consider having, - p1={1, 1, 1, ..., 1} andéz = 61, so that each sample of
yo(t) - y4(t) is an N-fold 11D sample of the same underlying Gaussian distribution having mean
1. Inthis casep = {1/N, 1/N, ..., 1/N} € results in g§ 1(t)) - 9(y »(t)) being an average of N 11D
samplings of the same underlying distribution. Such an average will have smaller variance than
would havingb =(1, 0, 0, ..., 0), while having the same bias (namely 0). In this case, the optimal

b is any vector proportional ©
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i) If the random variables G{y) and G ;) are symmetrically distributed about their means,

then
1 65 ,+068
po(2, M) < min 5, —1—22 1.
2°2m(G,-Gy)
Similar bounds hold fopgy;; (2, m), with O, A replaced by, and replaced gy
As a particular example of Thm. 3, for normally distributgglandy 4, and G(.) that is a linear

function of its argument, bound (ii) applies, and we know that modifying the reward signal cannot

gain us a factor greater than 2 in normalized performance.

3. DEFINITION OF OUR SPECIAL CASE

We now investigate a particular instance of this general phenomenon for K = 2, and in partic-
ular what is involved in approaching the performance improvement theoretically allowed accord-
ing to Thm. 3. For simplicty, we take each of the two distributiony D(to be a Gaussian,
centered orpl ; = (g 2 ..., MN,2) @nd Py = (g 1, ..., My, 1) respectively, and with (positive definite)
covariance matriceéz and él, respectively. Also for simplicity, we take @f) = € Uya +
Va D [ A for some matrixD and vectar | andyg() = b Oy A for some vectob . Note that
the magnitude ob  will have no effect on the student’s decision of which action to take.

Having non-zerd means that we are using a linear reward signal even though we know G is
nonlinear. There are several situations that this mismatch is meant to model. Perhaps the most
important is where due to computational limitations, the student can only use reward signals that
are linear functions of they{;(t)} and {y 5(t)}. In particular, it may be that due to communication
restrictions only a subset of the components of the({)} and {y 5(t)} are transmitted to the stu-
dent (namely those components i for whighsnot close to 0), and due to computational restric-
tions the student can only evaluate linear combinations of those transmitted components to get its

reward signal. If there are also computational restrictions on the teacher, restricting how often it
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: 0—2) < o _. reasonably, the bound in (ii), based
2" 2% T pZ+0?’ ’ ’

on extra restrictions on P(x), never exceeds the bound in (i).

Note that for any values qf anda, min(

For m = 1, we carsimplify our notation and write the expected value of G given the naive stu-
dent and the naive reward as P(A :fﬁ)l + P(A=2) Gz. P(A = 1) is just the probability that
G(¥,) - G(¥4) < 0. Defining the random variable z to bé¥) - G(¥4), E(z) = G,- G;> 0, and
we see that P(A = 1) is just the probability bounded in Lemma (1), with the x in that lemma set
equal to z. (P(A = 2) is just 1 minus this probability.)

To evaluate this bound on P(A = 1) we need the variance ofz,This is just the sum of the

variances of Gy ) and G§ »), 66,12 andGG,Zz, respectively. Accordingly, the bound in Lemma

.2 A2
Og,11+0g,2

1(i) is > - Together with the facts that E(G | best possible reward and stu-

~ ~2 2 A
0g,1+0g,2+(G2-Ga)
dent) = éz and E(G | worst possible reward and student(fsi this means that pg(2, 1) <

.2 2
0g,1%0g,2

2 .2 ~ -
0g 110G, 21 (G2-Gy)

5 - If we know that G§ ;) and G§ ,) are symmetric about their means,

2 .2
Og,110g, 20

P .So if
2(Go—-Gq1)O

then we can instead use the tighter of the two bounds in Lemma'r%,

the random variables ®@¢) and Gy ) are symmetrically distributed about their means, then we

A2 A2
Og 1 +0g -0
can instead writp(2, 1) < min%, GAl—AGi L
2(G,—-Gy)O

For m > 1, we need only use the fact that the distribution of the average of m 1ID samples of
any random variable t has the same mean as t and (1/m) times its variance. This gives the follow-

ing general results:

Theorem 3: X 5

. 0g,1*0G, 2

) po2,m) s —— N
0g,1+0g 2+ M(G—Gy)
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suggestion that in general we want to hav@£( 9, - 6?, ( 6§+ ) /' m) be smé&lif G; - IS pos-
itive, and large otherwise. Accordingly, &; should have the same sighpasG, - . (Thisis
called having a “factored” reward in [14].) Subject to that restriction we should choose;{ti¢ {g

so as to maximize the difference of §&( §; a7 GE )/ m) from 1/2. This means minimizing
the variances%i an&% , While having the magnitudéjof §,-  be as large as possible. Intu-
itively, this means that our signal will be maximally visible compared to our noise. (This is called
having “high learnability” in [14].)

Taken as a whole, we can use these considerations to advise us on what kind of functional
U({gi(.)}, data) we should maximize to set the;{g}. For example, it makes sense to have that
functional depend on the posterior probability tiggt §,-  has the same siga a5, T and
on data-based estimates | 0f |,€q2f , and‘jéf . It should be an increasing function of its
estimate of [m{, 0, |/<iri +6§ )] and aft. Since it is a posterior probabilityy automatically
has a bias preferring that all the;{Q} equal G(.), a bias arising from its prior. To ensure that
maximizing U({g(.)}, data) is unlikely to result in a performance degradation compared to the
naive student and reward, one may wish to augment that bias by havind.)}({@ata) weight the
T term more heavily as m shrinks. Intuitively, in keeping with Thm. 2, one would expect that
choosing the {¢.)} that maximize any reasonable U({{g}, data) that has these characteristics
should result in good performance.

For K = 2 it is straight-forward to boundg(K, m) (and therefore the potential performance
improvement entailed by distorting the reward function) independently of the details of our distri-
butions. To do so we will use the following “one-sided Chebychev’s inequalities”, derived in
Appendix B:

Lemma 1: For any real-valued random variable x with mpamd variance?,

. 02
i) P(sgn(x)z sgnf1)) < m,
and if x is symmetric about, then

y .1 02
i) P(sgn(x)# sgnf1)) < mln(é, 2_|12)'



over ON \ R, there is a non-zero probability that the empirical mean of our sampleygf)g(
exceeds those of all of the samples of thggk) even as K- «. In such a situatiorpy(K, m) is
less than 1 even as K. «. Accordingly, if we can identify such “forbidden regions” R and then
incorporate them into g(.), we will have drastically improvement performance (compared to using
the naive reward) for the case of an infinite number of actions.

On the opposite side of the spectrum, we will often be interested in the special case where K =
2 and our distributions can be parameterized by their means and variances. To address this case,
defined,,, as the random variable given by the average of m [ID sampleg(9Hd- 91(y 1)- Then
P(A=2]q, gy, m)is just the probability thal,, is positive. Similarly, PA =1 | g;, gy, m) is just
the probability thab,, is negative. So E(G jgg, m) =G;1 Pr(3,<0) + G, Prg,, > 0).

Moreover, by direct expansion, &( = g, - §,, and the variance dj; equals&f +6§ . Iter-
ating this rule for summing pairs of random variables, B{)n= m(3, - §,) and the variance of
md,,, equals mﬁi +6§ )- Accordingly, B, = §, - §,, and the variance &, equals Gi +6§ )

/ m. This establishes the following result:

Theorem 2: Assume that the cumulative distribution functiond{ is uniquely specified by its
mean and variance. Let C@&), 02(6m)) be that cumulative distribution function evaluated at O.

Then
EGla.gm) = G + By -G 1[1-Co, 9, .65 65 )/m).

So for instance Thm. 2 appliesdf,, is normally distributed. As a particular example, investi-
gated in detail below, the assumption in Thm. 2 holds wigandy ; are both normally distrib-
uted and both (.) and g(.) are linear functions of their arguments. This is because under those
circumstances, is a gaussian random variable, and therefore &g.is

More generally, Thm. 2 provides guidance on how to set thé)jgeven when it does not
strictly apply, for example when we do not have strong prior beliefs concerning howytkeré¢

distributed, and/or the student does not use the naive algorithm. Thm. 2 makes the very reasonable



E(G | naive student, {§ K, m) = Zi _ 1[éA x P(naive student chooses action A {{d<, m)],

the following result is derived in Appendix A:

Y [(Gc=6) [Pag,m® [ Ci.g, mit)et]
. _ ASK izA
Theorem 1.p{gi}(K, m) = = =

Gk -G1

To illustrate this theorem, consider the case of the naive reward. Intuitively, the more actions
the student can take, the more action-reward data sets it will look at at the end of the teaching
phase. Any one of those data sets may, by “statistical fluke”, have higher empirical mean than the
sample corresponding to the optimal action. So the more actions the student can take, the more
likely it is to find someaction which appears to be better than that of what is in fact the optimal
action. Thus, the more actions it can take, the more likely the student is to not choose the optimal
action.

By using Thm. 1, we can illustrate this phenomenon for the case where all the vaahles
are identically distributed, and therefore so are thg;g{). By that theorem, we can write
pg(K, m) = (K - 1) IPL 6. mDICy g m(DIX=2Cy ¢ (1) dt . In turn, we can write this as
1—IPK,G, m(D[Cy g m(DIK L dt, sinceJ’dgt(ﬂiCi,G’m(t))dt = 1. Consider the common
case where the support of B {t) is infinite. In this case, in the limit of large K, the product of
cumulative distributions in our integrand goes to O everywhere away from infinity. Accordingly,
so long as R g (1) is nowhere singular, the integral goes to 0, gadK, m) reduces to 1. Thus,
for fixed m, in the limit of a large number of possible actions, the naive student and reward will do
aspoorly as possible.

For the same problem not to befall the use of the distorted rewaf@{@ven if the gy (.)
are identical, it is necessary thai,gi’m(t) reaches 1 before @K'm(t) does. If both Py,) and
P(yk) are nowhere zero, this in turn requires thgt)o# g« (.). However there are cases where alll
the gy (.) are identical, but stilp # 1. In particular, consider the case where there exists a region R
0 ON across whicly ; is forbidden, whiley  can occur there with non-zero probability. Then by

having g(.) = gk(.) =9(.) and giving values to all g( [l R) that are larger than any of the values



G(.) for all A the naive reward For the special case of K = 2, we can write the naive student’s
algorithm as A(M+m+1) = 3/2 + sgy 1<tem+m 9207 2(1) - 91(§1(1) 1/ 2, where sgn(Z O) is
defined to be the sign of z when z is nonzero, and to be zero otherwise.

To normalize how much of an improvement we can possibly get by distorting the reward sig-

nal, we define a fractional improvement in performance:

Pgp(K, m) =
I E(G | best possible reward and student) E(G | rewagds)} and naive student)

E(G | best possible reward and student) E(G | worst possible reward and student)

pc(K, m) is defined apgy;; (K, m) when the naive rewards are used, so all f{pegjual G.
P(g;} (K, m) is implicitly a function of the distributions governing tiye, and the choice of the
{9i()}. pc(K, m) also depends on those distributions, in addition to depending onpg(K, m)
is a normalized measure of the largest performance improvement potentially achievable by dis-
torting the reward functions and/or the studeg(K, m) - pg:1 (K, m) measures the actual nor-
malized performance improvement if the naive student is used with the reward functjens {g
rather than if it is used with the single reward function G(.) for all actions.
For the analysis below it will be useful to defing f/,(x [ ) for an arbitrary function ff )
as the probability density function over the average of m IID samples?qt)f? Define the K
meansg = E(ga(Ya)), and define the associated varianéeé = E([ga(VA) - @A]Z). Also
define the K cumulative distribution functions as the integrals of ”A?giﬁ’n&i CA,gA,m(t OooO) =
Pr(y : the average of m IID samples ofa(y ) < t). Finally, define G, = E(G(¥,)) and

6?5, A= E([G(3,) —Gal?), and label the K actions in order of ascendyg  , from 1 to K.

2. GENERAL FORMULAS FOR PERFORMANCE IMPROVEMENT

In general, to calculatpg;; (K, m) we need only calculate E(G | naive studen}{&, m),

since the other three terms in the definitiorpéf .) are all eitheiGx 05, . Using the expansion



timetd{M + 1, ..., M + m} the student takes all such actions, in succession. There are a set of N
real-valued random variables which are sampled once after each such action. This generates K
separate N-dimensional vectorgj;{t) = (v i(t), ..., w,i®) : i O{1, .. K}, tO{M+1,..., M+
m}}. In each such sampling, the distribution governing the N-dimensional random vagable is
determined solely by the student’s associated action, and in particular does not depend on the
results of any other samplings. Furthermore, the rule relating the student’s action and the distribu-
tion over the N variables do not change in time. So another way to view a set of m K-tuples of
samplings is as the generation of K distinct sets of m independent and identically distributed (11D)
samplings, one set for each of the K separate N-dimensional random variables associated with
each of the student’s K possible actions.

At each moment t1 {M+1, ..., M+m}, in response to each of its K actions, the student will
receive K associated reward signals, with valuggy{dt))} for some functions {g(.)} (i ranges
over the possible actions). The student will then at time M+m+1 use that set of Km reward signals
to estimate which of its K possible actions A will, if used forevermore, likely result in the highest
possible value 0Eip+m+1 9a(Y a(t)). Due to the 11D nature of the generation of the samples, this
is equivalent to estimating which action A will result in the highest possible value of
ga(y a(M+m+1)).

The student’s utility iy G(y a() (1)) for some function G(.), where A(t) is its action at time t.
We will judge the student’s performance (and therefore the choice of the)fpnot in terms of
Zism+m+1 a(Ya(), but in terms of the true utilityXepem+r G(Y A (L), i.e., in terms of
G(Y av+m+1)(M+m+1)). So given a particular specification of the student’s estimator for predict-
ing which A to use, our goal is to choose the set of reward functiof(s){ghat optimizes the
value of G§ opm+m+1)(M+m+1)) that will result from the student’s using that estimator.

For simplicity, we assume the student performs its estimation of which action to use with the
maximum likelihood unbiased estimator of the means of the K distributions governing the gener-
ation of the {yal}. L In other words, we assume the student picks the action given by

argmaa| Sys1<temem Ia(Y a() 1.2 We call this thenaive studentand we call having g(.) =



ations one can often partially “parallelize the teacher”, by distributing to those computational
devices an approximate version of the calculation of whether the associated component of the lin-
ear filter is low enough to be set to zero. Under this approach, during the observation phase, each
of the computational devices collects the data associated with its random variable. Then at the end
of the observation phase, all the devices look at their accumulated data, and only those devices
that decide that they shoufbt zero the associated component communicate their data to a central
teacher. Then that teacher performs its calculation of the best linear filter, but only considering
those components of the filter whose associated devices it has data from. In this scheme both the
computational and communication burdens on the teacher may be reduced substantially, com-
pared to having the teacher receive and process all the data from all the random variables. This is
in addition to the reduction in such burdens already enjoyed by the students, via their having their
rewards determined by the teacher.

Sections 3 and 4 are more intuitive than Section 2. As much as possible, we have written those
two sections so that the reader can skip to them directly after having read Section 1.

The results of this paper demonstrate that there are scenarios in which an appropriate choice
of reward signal can result in an extremely large improvement in the performance of the student.
They also show that it is possible, at least in a simple scenario, to exploit this phenomenon by hav-
ing a teacher observe a system, and based on that observation, tailor the reward signal the student
receives. Doing this markedly improves the student’s subsequent performance, all at little cost
both in extra communication overhead on the system as a whole and in computational overhead

on the student.

1. GENERAL PROBLEM DEFINITION

We consider one of the simplest possible RL scenarios. There is a single teacher and a single

RL-based student. The student can only take one of K possible actidig,JA..., K}. At each



distribution-independent bounds on the maximal gain in performance potentially achievable by
distorting the reward function for the special case wher= 2. Theresults of this section hold for
arbitrary reward functions, including functions that are not linear filters and/or that depend on the
student’s action.

In Section 3 we present a preliminary investigation of how some of the potential improvement
calculated in Section 2 might actually be realized. We do this by analyzing in detail a special, sim-
ple version of the case where the reward function is given by a linear filter that is the same for any
of the student’s action. For this special case we calculate in closed form the energy function map-
ping the filter to the associated expected value of the student’s performance & time + 1.

This function is parameterized by the distributions governing the relationship between the stu-
dent’s actions and the rest of the system. During its observation phase the teacher can form a
Bayesian posterior over of those distributions, and therefore a posterior expected energy function.
In Section 4 we present an approximate calculation of the posterior expected energy function. We
then present a simple-minded gradient ascent scheme for that posterior expected energy function
that the teacher can use to (try to) calculate the optimal filter.

In Section 5 we present the results of experimental tests of that scheme. In particular, we
investigate an approximation to the gradient ascent in which the smallest of the components of the
filter are set to O after the ascent has completed. With this approximation, the communication
overhead in generating the student’s reward signal at each moment in the teaching phase is mini-
mal, an important consideration in real MAS’s. Indeed, in many MAS'’s each student can only poll
a small number of random variables at each time step. For such a system, having a teacher deter-
mine which variables the student should poll (e.g., by setting many components of a linear filter to
0) is more a necessity than a luxury. This approximation also reduces the computational overhead
on the student, another important practical concern.

A final advantage of this approximation arises when there are many random variables in the
student’s environment that affect its true utility, and many of those variables are accompanied by

computational devices (e.g., if those random variables are other students in a MAS). In such situ-



with balancing exploration vs. exploitation, and the like. In addition, for a large system with many
random variables, the student may have difficulty discerning the “echo” of its actions in the values
G(¢), since the effect of those actions could be swamped by all the other processes in the system.
In essence the student faces a signal/noise problem. However, due to its superior observational
abilities, computational resources, and prior knowledge, the teacher can more directly discern the
effects of the student’s actions. It can then distort the rewards received by the student to reflect this
deeper understanding of the system. For example, the teacher can accentuate the contribution to
the reward coming from those random variables that depend strongly on the student’s actions, in a
fashion reminiscent of Kalman filters. In essence, in this setting the teacher is trying to “com-
press” a sophisticated analysis of all the relevant information it has access to into a form usable by
the computationally restricted student (namely, into a reward function). It then transfers that infor-
mation to the student, and in this way shoulders much of the student’'s computational burden.

This paper investigates this issue of how the teacher should set the rewards to improve signal/
noise for some very simple (and therefore tractable in closed form) scenarios. In these scenarios,
the teacher first observes the overall system for some “observation phasél, t.., M}. The
teacher then uses that data to set a reward function. The teacher has nothing to do with the student
subsequent to this calculation. The reward signal received by the student at each moment during a
subsequent “teaching phase[J{M + 1, ..., M + m}, is given by applying the reward function
calculated by the teacher to the state of the full system at each such t. (If it is just a linear filter,
calculation of such a reward imposes minimal computational overhead on the entity calculating
the rewards, which may be the student itself.) The student then uses those signals to choose what
action to take att M + m + 1. So for @ample, in the case of online, continual RL, we would
have m = 1. The algorithm used by the student to make its choice was known ahead of time by the
teacher when the teacher was deciding on the filter.

In Section 1 we present our general problem in detail. In Section 2 we derive the formula for
the performance (as measured by the student’s true utility) accompanying any particular reward

function, as a function of m and of the number of actions K the student can take. We then present



INTRODUCTION

Consider the following scenario:

1) There is a “student” running a Reinforcement Learning (RL - [2, 3, 7, 8, 9, 11]) algorithm, who
knows relatively littlea priori concerning the relationship between its observations, its actions,
and the responses of the environment.

2) There is a separate “teacher” who watches the student as well as the rest of the system, and
knows the student’s “true” utility function. The teacher (potentially) knows the form of the proba-
bility distributions underlying the full system’s dynamics.

3) The teacher determines the rewards that the student receives.

How should the teacher set the student’s rewards to most benefit the student, i.e., to maximize
the student’s true utility? This question arises particularly often in RL-based Multi-Agent Systems
(MAS’s - [3, 6, 10]). Invariably in such systems different agents have access to different amounts
of global information and have different computational resources. Moreover, often there is noth-
ing preventing the more powerful and knowledgeable of the agents from modifying the calcula-
tions of the rewards received by the other agents. So thereaspnori reason that they cannot
play the role of teacher.

One answer to our question would be for the teacher to simply provide the student with the
conventional reward signal associated with the student’s true utility function. For example, if time
tis discrete and integer-valued, the state of the full system at time t is the Euclideandyeatat
the student’s goal is to maximize an undiscounted sum of valug$, @(en the teacher could pro-
vide the student the reward signal@at each moment t.

An alternative would be for the teacher to use its superior insight to “steer” the student, by dis-
torting the rewards received by the student in such a way as to induce the student to learn more

effectively. This could potentially help the student with solving its credit assignment problem,
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Abstract: This paper investigates distorting the reward function to improve the performance of a rein-
forcement learning algorithm. This issue is particularly important when many random variables con-
tribute to performance, and in particular in large, heterogeneous, multi-agent systems. For tractability,
we concentrate on a very simple scenario in which the utility of a “student” is an undiscounted sum of
rewards, and each such reward is a sample of a distribution over a multi-dimensional Euclidean space,
where the precise distribution sampled at time t is determined by the student’s action at time t. First
we derive the formula for the amount of improvement in performance possible by distorting the
reward function. We show that as the number of actions the student can take is increaseabmsing
distorted reward functions results in the worst possible performance with probability 1. We then
derive some general upper bounds on the amount of possible improvement in performance for the
case where the student can only choose between two possible actions. Next we analyze a particular
instance of this scenario in which the underlying distributions are Gaussian. We derive exact formulas
for how much performance improvement is possible with a particular parameterized class of distor-
tions of the reward function. We then derive a Bayesian algorithm for how a “teacher” should estimate
from a finite set of data which of the distortions from such a class to use. We end with computer
experiments verifying the gain in performance entailed by use of that algorithm, and discuss the gen-

eral implications of this work for large, heterogeneous, multi-agent systems.
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